NASA/CR-2003-212685
NIA Report No. 2003-09

NATIONAL
INSTITUTE OF
AEROSPACE

Match-bounded String Rewriting Systems

Alfons Geser
National Institute of Aerospace, Hampton, Virginia

Dieter Hofbauer
University of Kassel, Kassel, Germany

Johannes Waldmann
University of Leipzig, Leipzig, Germany

]
December 2003

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report

types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

e TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

« CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

« CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

» SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

» TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the

STI Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

* Access the NASA STI Program Home
Page ahttp://www.sti.nasa.gov

< Email your question via the Internet to
help@sti.nasa.gov

* Fax your question to the NASA STI
Help Desk at (301) 621-0134

» Telephone the NASA STI Help Desk at
(301) 621-0390

e Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CR-2003-212685
NIA Report No.2003-09

NATIONAL
INSTITUTE OF
AEROSPACE

Match-bounded String Rewriting Systems

Alfons Geser
National Institute of Aerospace, Hampton, Virginia

Dieter Hofbauer
University of Kassel, Kassel, Germany

Johannes Waldmann
University of Leipzig, Leipzig, Germany

National Aeronautics and Prepared for Langley Research Center
Space Administration under Contract NCC-1-02043

Langley Research Center
Hampton, Virginia 23681-2199

]
December 2003

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 487-4650

MATCH-BOUNDED STRING REWRITING SYSTEMS*

Alfons Geser!, Dieter Hofbauer?, and Johannes Waldmann?

ABSTRACT

We introduce a new class of automated proof methods for the termination of rewriting
systems on strings. The basis of all these methods is to show that rewriting preserves
regular languages. To this end, letters are annotated with natural numbers, called
match heights. If the minimal height of all positions in a redex is h then every position
in the reduct will get height h + 1. In a match-bounded system, match heights are
globally bounded. Using recent results on deleting systems, we prove that rewriting by
a match-bounded system preserves regular languages. Hence it is decidable whether a
given rewriting system has a given match bound. We also provide a sufficient criterion
for the absence of a match-bound. The problem of existence of a match-bound is
still open. Match-boundedness for all strings can be used as an automated criterion
for termination, for match-bounded systems are terminating. This criterion can be
strengthened by requiring match-boundedness only for a restricted set of strings, for
instance the set of right hand sides of forward closures.

1 INTRODUCTION

Rewriting is a model of computation. It allows to handle questions like termination (there is
no infinite computation), normalization (a final configuration is reachable) and correctness
(no erroneous configuration is reachable). These questions can be stated in terms of sets
of descendants: if R is a rewriting system, and L is a language, then R*(L) = {y | = €
L,z —% y}. Now R is correct for L iff R*(L) N Err = (), and R is normalizing for L iff
L C R *(Final), with Err and Final denoting the set of erroneous and final configurations,
respectively. Starting from classical program analysis, recent applications include verification
of XML transformations [3] and cryptographic protocols [10].

From the point of view of these applications, the reachability relation R* should effectively
respect language classes with good decidability and closure properties—Ilike the class of
regular languages. Some of us recently showed [17] that deleting string rewriting systems
respect regular languages. In the present paper, we transfer this result to match-bounded
string rewriting.

Every match-bounded system terminates, and effectively preserves regularity of lan-
guages. Therefore it is decidable whether a given system has a given match-bound. This
makes match-boundedness a new automatic criterion for termination. The criterion applies

*This work was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-97046.

TSenior Staff Scientist, National Institute of Aerospace (NIA), 144 Research Drive, Hampton, VA 23666.
Email: geser@nianet.org, Web: http://research.nianet.org/ geser/.

! Assistant Professor, Dept. of Mathematics/Informatics, University of Kassel, D-34109 Kassel, Germany.
Email: dieter@theory.informatik.uni-kassel.de.

§ Assistant Professor, Faculty of Mathematics/Informatics, University of Leipzig, D-04109 Leipzig, Ger-
many. Email: joe@informatik.uni-leipzig.de.

for instance to Zantema’s System {a?b?> — b3a3} (match-bound 4) for which hitherto all
automated termination proof methods failed.

A string rewriting system R is called deleting if there exists a partial ordering on its
alphabet such that each letter in the right hand side of a rule is less than some letter in the
corresponding left hand side. Deleting systems can be understood as the inverses of context
limited grammars as defined and investigated by Hibbard [16]. Deleting rewriting systems
terminate and have linearly bounded derivational complexity.

To obtain automated termination proofs, we transform rewriting systems as follows:
We annotate letters with numbers, which we call match heights. A position in a reduct
will get height h + 1 if the minimal height of all positions in the redex is h. A rewriting
system is match-bounded if match heights of derivations are globally bounded. In this case
its annotated system is finite and deleting. Termination and regularity preservation carry
over from the annotated to the original system. The recognizing automaton for the set of
descendants modulo the annotated system is a certificate for match-boundedness.

We study also REC-match-boundedness, a variant of the criterion, where a system has to
be match-bounded only for the set of right hand sides of its forward closures. By a result of
Dershowitz, termination there is sufficient for uniform termination.

Basic definitions, results and examples are given in Sections 3 and 4, while in Section 5
we discuss how to verify or refute match-boundedness. In Section 6 we introduce RFC-
match-boundedness, and consider some variants of this notion in Section 7. All main criteria
are implemented (Section 8). Section 9 contains a short comparison of our new termination
criteria with Zantema’s Termination Hierarchy. We conclude by discussing ramifications for
further research in Section 10.

Some of the results reported here have been presented at the 28th International Sympo-
sium on Mathematical Foundations of Computer Science MFCS 2003 at Bratislava, Slovak
Republic [12] and at the 6th International Workshop on Termination WST 2003 at Valencia,
Spain [13].

2 PRELIMINARIES

We mostly stick to standard notations for strings and string rewriting, as e.g. in [2]. We use
e for the empty string, and |z| is the length of a string x. Let REG denote the class of regular
languages. Further, for a language L C ¥*, let factor(L) = {y € ¥* | I,z € X* : xyz € L}.

A string rewriting system over an alphabet X is a relation R C ¥* x ¥*, inducing the
rewrite relation —g = {(xly, xry) | ,y € ¥*,({,r) € R} on ¥*. Unless indicated otherwise,
all rewriting systems are finite. Pairs (¢, r) from R are frequently referred to as rules ¢ — r.
By lhs(R) and rhs(R) we denote the sets of left (resp. right) hand sides of R. The reflexive and
transitive closure of —p is —%, often abbreviated as R*, and —}, or R™ denote the transitive
closure. An R-derivation is a (finite or infinite) sequence (xg,z1,...) with x; —g x;4, for
all i. We call R terminating on L C ¥* if there is no infinite derivation starting with some
xo € L. If L =% we call R terminating. In order to classify lengths of derivations, define
the derivation height function modulo R on ¥* by dhg(z) = max{n € N | Jy € ¥* : v =} y}.
The derivational complezity of R is defined as the function n — max{dhg(z) | |z] < n} on
N.

A rewriting rule ¢ — r is context-free if |¢| < 1, and a rewriting system is context-free if
all its rules are.

For a relation p € Ax Blet p(a) = {b € B | (a,b) € p} fora € A and p(A") = U,c4 pr(a)
for A" C A. The inverse of p is p~ = {(b,a) | (a,b) € p} C B x A, and we say that p satisfies
the property inverse P if p~ satisfies P. Thus, the set of descendants of a language L C X*
modulo some rewriting system R is R*(L). The system R is said to preserve regularity
(context-freeness) if R*(L) is a regular (context-free) language whenever L is.

For a relation p C ¥* x ¥* and a set A C X, let p|a denote p N (A* x A*). Note the
difference between R*|a and (R|a)* for a string rewriting system R. E.g., for R = {a —
b,b — ¢} over ¥ = {a,b,c} and A = {a, c} we have (a,c) € R*|a, but (a,c) ¢ (R|a)*.

A relation s C X* x I'* is a substitution if s(e) = {e} and s(xy) = s(x)s(y) for x,y € L*.
So a substitution s is uniquely determined by the languages s(a) for a € . If each language
s(a) for a € 3 is finite, then s is a finite substitution.

Now we recall definitions and results regarding deleting string rewriting systems [17], a
topic that goes back to Hibbard [16]. A string rewriting system R over an alphabet 3 is
>-deleting for an irreflexive partial ordering > on ¥ (a precedence) if € ¢ lhs(R), and if for
each rule / — r in R and for each letter a in r, there is some letter b in ¢ with b > a. The
system R is deleting if it is >-deleting for some precedence >.

Proposition 1 ([17]). Every deleting string rewriting system is terminating, and has linear
derivational complexity.

Furthermore, we have the following decomposition result.

Theorem 1 ([17]). Let R be a deleting string rewriting system over . Then there are an
extended alphabet I' O X, a finite substitution s C ¥X* x '™, and a context-free string rewriting
system C over I' such that R* = (s o C™*)|x.

As a consequence, inverse deleting systems effectively preserve context-freeness, a result
by Hibbard [16]. As another consequence we get:

Corollary 1 ([17]). Every deleting string rewriting system effectively preserves regularity.
3 MATCH-BOUNDED STRING REWRITING SYSTEMS

We will now apply the theory of deleting systems to obtain results for match-bounded rewrit-
ing. A derivation is match-bounded if dependencies between rule applications are limited.
To make this precise, we will annotate positions in strings by natural numbers that indicate
their match height. Positions in a reduct will get height A + 1 if the minimal height of all
positions in the corresponding redex was h.

Given an alphabet X, define the morphisms lift. : ¥* — (X x N)* for ¢ € N by lift, :
a +— (a,c), base : (¥ x N)* — X* by base : (a,c¢) — a, and height : (¥ x N)* — N* by
height : (a,c) — c. For a string rewriting system R over ¥ such that e ¢ lhs(R), we define
the rewriting system

match(R) = {¢' — lift.(r) | (¢ — r) € R,base({') = £,c = 1 + min(height(¢'))}
over alphabet ¥ x N. For instance, the system match({ab — bc}) contains the rules agby —

bici, agby — bicy, ajbg — bicy, ajby — bacy, agby — bicy, ..., writing x. as abbreviation
for (z,c). For non-empty R, the system match(R) is always infinite. Note that systems

3

with € € lhs(R) are trivially non-terminating, so the above restriction does not exclude any
interesting cases.

Every derivation modulo match(R) corresponds to a derivation modulo R, (for z,y €
(X x N)*, if 2 —paten(r) ¥ then base(r) —pr base(y)) and vice versa (for v,w € ¥* and
x € (X x N)* if v - w and base(x) = v, then there is y € (X x N)* such that base(y) = w
and —maten(r) ¥). In particular, for n € N we have R™ = lift; o match(R)" o base; thus

R* = liftg o match(R)* o base.

Definition 1. A string rewriting system R over ¥ is called match-bounded for L C ¥* by
c € N if € ¢ lhs(R) and max(height(z)) < ¢ for every x € match(R)*(lifto(L)). If we omit L,
then it is understood that L = ¥*.

Note that max(height(x)) (and min(height(¢')) in the definition of match(R)) denotes
the maximum (minimum, respectively) over the corresponding sequences of heights; we set
max(e) = 0, and we leave min(e) undefined as this case is excluded in the definition of
match(R). Obviously, a system that is match-bounded for L is also match-bounded for any
subset of L by the same bound. Further, if R is match-bounded for L then R is match-
bounded for R*(L), again by the same bound.

For a match-bounded system R, the infinite system match(R) may be replaced by a
finite restriction. Denote by match.(R) the restriction of match(R) to the alphabet ¥ x

{0,1,...,c}.

Lemma 1. If R is match-bounded for L by c, then R"|; = (liftg o match.(R)" o base)|,, for
n € N, thus
R*|, = (lifty o match.(R)" o base)|y.

Lemma 2. For all R with € ¢ lhs(R) and all ¢ € N, the system match.(R) is deleting.

Proof. Use the precedence > on ¥ x {0,...,c} where (a,m) > (b,n) iff m < n. (Letters of
minimal match height are maximal in the precedence.) O]

Theorem 2. If R is match-bounded for L, then R is terminating on L.

Proof. An infinite R-derivation starting from an element of L can be transformed into an
infinite match(R)-derivation from an element of lifto(L). The latter, given that R is match-
bounded by ¢, is a match.(R)-derivation. However, match.(R) is deleting by Lemma 2 and
hence terminating by Proposition 1. O

Likewise, Lemma 1 implies linearly bounded derivation lengths for match-bounded sys-
tems.

Proposition 2. FEvery match-bounded string rewriting system has linear derivational com-
plexity.

We conclude this section with a few examples.

Ezample 1. The system {ab — bc} is match-bounded by 1, {aa — aba} is match-bounded
by 2, {ab — ac,ca — be} is match-bounded by 2, and {ab — ac, ca — b} is match-bounded
by 3.

All these bounds can be verified automatically, as will be explained in Section 5. The
next example illustrates that indeed any number can be a least match bound.

Ezxample 2. The bubble sort system By = {ab — ba} over the two-letter alphabet {a,b} is
match-bounded for a*b™ by n, but not by n — 1. The system {a; — a;41 | 0 < ¢ < n} over
alphabet ¥ = {a; | 0 < i < n} is match-bounded (for ¥*) by n, but not by n — 1. As a
variant of the previous example, now over a fixed alphabet, consider the system {ab'c —
ab™c | 0 < i < n} over {a,b,c}; it is match-bounded by n, but not by n — 1. The same
holds true for the length-preserving variant {ab’c"~"*' — abi™ "™ | 0 < i < n}.

Example 3. System By is not match-bounded (for {a, b}*) since it has quadratic derivational
complexity, contradicting the conclusion of Proposition 2.

Dually to Lemma 2, we have:
Proposition 3. If R is deleting, then R is match-bounded.

Proof. Assume R over X is deleting for the precedence > on . Then R is match-bounded
by the maximal height (i.e., length of a descending chain) in (3, >). O

Ezample 4. The system {ba — ¢b,bd — d,cd — de} is match-bounded by 2, since it is
deleting for the precedence a > b >d, a > c > e, ¢ > d.

4 MATCH-BOUNDED SYSTEMS PRESERVE REGULARITY

Here, we elaborate on the fact that match-bounded string rewriting systems always preserve
regularity. The section concludes on a short comparison of match-boundedness to the related
concept of change-boundedness [25].

Theorem 3. If R is match-bounded for L € REG, then R*(L) € REG.

Proof. By Lemma 1, R*(L) = base(match.(R)*(lifto(L))) for some ¢ € N. As match.(R) is
deleting by Lemma 2, thus regularity preserving by Corollary 1, and since REG is closed
under morphisms, we are done. O

Ezample 5. For R = {aaba — abaab} (cf. [19], p. 118) and L = (aab)*, the language
match(R)*(lifto(L)) is accepted by the following automaton. We use generalized automata
where transitions are labelled by words instead of single letters.

al n bl

bla%bl

By stripping heights from all letters, one obtains an automaton accepting R*(L).

Ezample 6. The bubble sort system By = {ab — ba} is not regularity preserving, since
B;((ab)*) na*b* = {a™™ | n > 0} is not regular. So Theorem 3 implies that By is not
match-bounded. (Cf. Example 3 for another indirect proof, and Example 10 for a direct
proof of the same fact.)

However, not every regularity preserving string rewriting system is match-bounded. For
instance, the system {aa — a} constitutes a counterexample. As a monadic system (i.e.,
|¢| > |r] <1 for ({ — r) € R) it preserves regularity [1, 2], but it is not match-bounded as
proven in Example 12.

Remark 1. There are terminating and regularity preserving systems with high derivational
complexity as we are going to demonstrate.

For an alphabet X, define the string rewriting system Embed(X) = {a — € | a € ¥}.
By an application of Kruskal’s Theorem, the subword language Embed(X)*(L) is regular for
each language L over X, cf. Theorem 7.3 in [4]. This implies that for any rewriting system
R over ¥, the system R U Embed(X) preserves (in fact, generates) regularity.

Termination of R U Embed(X) is called simple termination of R. By the above, ev-
ery simply terminating rewriting system R can be extended to a (simply) terminating and
regularity preserving system while keeping or increasing its derivational complexity. E.g.,
{ab — ba,a — €,b — €} preserves regularity, and has quadratic complexity.

Example 7. Peg solitaire is a one-person game. The objective is to remove pegs from a board.
A move consists of one peg X hopping over an adjacent peg Y, landing on the empty space
on the opposite side of Y. After the hop, Y is removed. Peg solitaire on a one-dimensional
board corresponds to the string rewriting system

P={mEC - O0OW Oul — BO0O}

where B stands for “peg”, and [for “empty”. One is interested in the language of all
positions that can be reduced to one single peg, which is P~*(CJ*BO*). Regularity of
P~ (M) is a “folklore theorem”, see [24] for its history. The system P~ is match-
bounded by 2, so we obtain yet another proof of that result.

Remark 2. Ravikumar [25] proves that P~ preserves regularity by considering the system’s
change-bound (which is 4). Change-boundedness is similar to match-boundedness. Given a
length-preserving string rewriting system R (viz. |¢| = |r| for every rule ¢ — r), define the
system

change(R) = {¢ — r | (base({) — base(r)) € R, height(succ(¢)) = height(r)}

over alphabet ¥ x N, where succ is the morphism succ : (X x N)* — (¥ x N)* induced
by succ : (a,h) — (a,h + 1). For instance, the system change({ab — bc}) contains the
rules agbg — bic1, agby — bico, a1bg — bacy, a1by — boco, agby — bics, ... Ravikumar
proves that if change(R)*(lifto(L)) has bounded height, then R preserves regularity of L.
In contrast to change-bounds, match-bounds are also applicable to non-length-preserving
systems. For length-preserving systems, match(R) will always give lower or equal heights,
so our result directly implies Ravikumar’s. In fact, it can also be shown conversely that
match-boundedness implies change-boundedness for length-preserving systems.

5 VERIFICATION AND REFUTATION OF MATCH-BOUNDS

In this section, we show that match-boundedness by a given bound is decidable. Further,
we provide a sufficient condition for the absence of a match bound. We leave decidability of
match-boundedness as an open problem.

Theorem 4. The following problem is decidable:
GIVEN: A string rewriting system R, a regular language L, and ¢ € N.
QUESTION: [Is R match-bounded for L by c?

Proof. Construct a finite automaton for L.;; = match.,q(R)*(lifto(L)), using Theorem 3.
Then R is match-bounded for L by c¢ iff max(height(L..1)) < c. O

Any given automaton over alphabet > x N can be seen as a potential certificate of the
fact that R is match-bounded for L by ¢, and hence of termination of R on L. The certificate
is valid if the accepted language

1. includes lifty(L),
2. is closed under rewriting modulo match.1(R), and
3. contains no letter of height ¢ + 1.

The first two items imply that match.,;(R)*(lifto(L)) is included in the accepted language.
Validity of such a certificate can be decided by standard algorithms for finite automata.

Ezample 8. For R = {aa — aba} and L = {a,b}*, the set match(R)*(lifto(L)) is accepted by
the following (non-deterministic) automaton. (Again, we use an obvious generalized notation
where transitions are labelled by sets of words.)

redex path reduct path
ABAB A AL BB CS A
ABAB Bl ABBY B
ClABA|lCcBBEBCS A
CBASB C 2 p

Closure under match(R) can be verified by checking off the table on the right. Since the
highest label is 2, the automaton certifies that R is match-bounded by 2, as claimed in the
introductory Example 1.

For an implementation, the growth of | match.(R)| as a function of ¢ is problematic.
However, when computing match.(R)*(lifto(L)), we may restrict attention to those rules of
match.(R) that are accessible in derivations starting from lifto(L). For a language L C ¥*,
a system R over X, and a system S C match(R) define

accessible(L, R, S) = match(R) N (factor(S*(lifto(L))) x (X x N)*).

Note that this construction is effective if a finite system S and a regular language L are
effectively given. We construct a sequence of rewriting systems R; by Ry = () and R, =
accessible(L, R, R;). Induction on ¢ shows R; C match;(R) for ¢ > 0. In particular, every
system R; is finite. By induction on 7, using that S C S’ implies accessible(L, R, S) C
accessible(L, R, S’), one also proves that R; C R;;;. Define Ry = [J,oyRi- Clearly,
R (liftg(L)) = match(R)*(lifto(L)). If R is match-bounded for L by ¢, then R is a subset
of match.(R); so R is finite, and there is an index N such that Ry = Ry =---. If Ris

7

not match-bounded for L, then R., contains for each ¢ a rule with height ¢, and therefore
is infinite. We remark that the enumeration of R; up to i = | match.(R)| + 1 can be used as
an alternative decision procedure for Theorem 4.

Ezample 9. Proving termination of the one-rule system Z = {a?b* — b*a’} is known as Zan-
tema’s Problem. This is a “modern classic” in rewriting [5, 8, 19, 27, 28, 32|, as it provides a
test case where all previous automated methods for termination proofs fail. Our algorithm
constructs in 6 iterations a deterministic automaton with 85 states. This automaton rec-
ognizes match(Z)*(liftg(X*)) and certifies that Z is match-bounded for ¥* by 4. This also
proves that Z has only linear derivational complexity, a result by Tahhan-Bittar [28].

Sometimes we can also verify automatically that a given rewriting system R (e ¢ lhs(R))
is not match-bounded for a language L. For this purpose, we want a non-empty witnessing
language W C L such that every element in W can be reached from some element in W by
an all-height increasing derivation. By chaining such derivations, strings of arbitrary height
can be derived, disproving match-boundedness. In the remainder of this section we formalize
this argument.

For u,v € (X x N)* we write u > v if base(u) = base(v) and height(u) >, height(v),
where >,, denotes the pointwise greater-or-equal ordering on N™. We assume W C . A
string y € W is reached from x € W if there is a derivation lifty(z) —>fnatch(R) py'q for some
string 3 > lift1(y) and strings p,q. Now every element in W is reached from an element in
W if W C raised(R, W), where the latter set of strings is defined by

raised(R, W) = base(factor(match(R)*(lifto(W))) N (X x (N'\ {0}))T).

First we observe that a match(R)-derivation can always be raised to greater heights since
the two relations > and —patcn(r) cOmmute:

Lemma 3. > 0 —ateh(R) © —match(R) © =

Proposition 4. Let R be a string rewriting system such that € ¢ lhs(R), and let W be a
non-empty language, both over .. If W C raised(R, W), then R is not match-bounded for
W.

Proof. We prove a stronger claim: If W C raised(R, W) then, for every ¢ > 0,
W C base(factor(match(R)*(lifto(W))) N (X x {c,c+1,...).

In other words, every element of W can receive unbounded match heights. We prove this
claim by induction on ¢. Consider y € W. For ¢ = 0 we obtain y € base(factor(liftg(y)) N
(3 x N)T). So assume ¢ > 0. By inductive hypothesis there is a string u € W and a
derivation

hfto(u) _>:natch(R) pqu
with y' > lift._;(y). Since u # €, this derivation can be relabelled to a derivation

166, (1) — ey SUcC(p) sue(y) suce(q)

with succ(y’) > suce(lift._1(y)) = lift.(y), where succ is the morphism defined in Section 4,
increasing the height of each position by 1. Since u € W C raised(R, W), there is v € W
and a derivation

llft()(?]) _>;knatch(R) p,ulq/ (1)
with « > lift)(u). By Lemma 3 we get a derivation

Uswisw/i

u’ _);knatch(R) Pyaq (2)
for some y” > succ(y’). We conclude by composing (1) and (2) into a derivation

/NI

lifto (v) —maten(r) P00 —marenr) PPy q"q
with y” > lift.(y). O
A slightly weaker version of Proposition 4 is obtained as follows: Define
raised.(R, W) = base(factor(match.(R)*(lifto(17))) N (X x (N'\ {0}))F),
and replace raised(R, W) in Proposition 4 by raised.(R, W):

Corollary 2. Let R be a string rewriting system such that € ¢ lhs(R), and let W be a
non-empty language, both over 3. If W C raised.(R, W) for some ¢ € N, then R is not
match-bounded for W.

This version can be effectively checked if a finite system R, a number ¢ € N, and a regular
language W are effectively given.

Ezample 10. The system By = {ab — ba} (cf. Example 6) is not match-bounded for ¥*.
Take W = (ab)™. Then raised; (Bs, W) = factor((ba)™) D W.

Ezample 11. Neither is R = {aabb — ba} match-bounded, as witnessed by W = {a,b}" =
raised; (R, W). This can be seen as follows. Define the two morphisms ¢ : a — a,b — abb
and v : a +— aab,b — b. Then, for each y € ¥*, there are derivations

ap(y) =pya and ¢Y(y)b—xbuy,

and these can be combined to a derivation

a p(P(y)) abb = a ¢(¢(y) b) = P(y) ba =R by a.

When lifting this to a match(R)-derivation, starting from heights 0, all final heights are 1.
This proves that for each y € W = X7, there is 2 = a¢g(¢(y))abb € T = W with the
required property. In contrast, the system {a3b® — b?a?} is match-bounded by 2.
Ezample 12. The regularity preserving system R = {aa — a} is not match-bounded: check
that W = {a*" | n € N} C raised; (R, W). Alternatively, W’ = a™ C raised; (R, W’).
Ezample 13. The system R = {ab — bba} is not match-bounded for ¥* because it ad-

mits derivations a"b H%Ll b*"a™ of exponential lengths. Another proof can be given by

Proposition 4. One shows by induction that, for k£ > 0,

9

*

1. axbi — ¥ ateh(R) b\ a1 for i >0, and

2. aghibib3 .. b =k Dib1bE B ag

So ag'by, m > 1, rewrites to a string that contains the factor a,,—; ...a1b;:

m m—172 * 2 2m—2
Qg b() _>match(R) %) blal _>match(R) blb1b2 . bmfl Ayp—1 - - - alblal.

Hence W C raised(R,W) for W = a™b. Note that this set of witnesses is regular, but
the given derivations (verifying the witnesses) are not globally match-bounded. On the

other hand, we can have match-bounded verification for the non-regular set of witnesses
W' = {ab®"ab* " ...ab | n € N}, since W’ C raised; (R, W’).

Looping string rewriting systems form a particular subclass of the class of all non-
terminating systems. A loop is a derivation of the form s —7 psq for strings s,p, ¢ € I*. As
it turns out, the existence of a loop can be characterized in terms of finite sets of witnesses,
as follows.

Proposition 5. A string rewriting system R admits a loop if and only if there is a finite,
non-empty set W such that W C raised(R, W).

Proof. If R admits a loop then it also admits a loop s —% psq during which every position
between letters is touched [14]. So lifty(s) _>I1atch(R) p's'q for some s > lifty(s). The
claim holds with W = {s}. Conversely, let W C raised(R,W). Then for every k > 0
there is a sequence wp,wy, ..., wy such that w;; € raised(R, {w;}) for 0 < ¢ < k, thus
w; € raised(R, {w;}) for 0 < i < j < k. For k = |W/|, by the pigeonhole principle, there are
i < j such that w; = w;. Hence w; = w; € factor(R*({w;})) forms the desired loop. O

The converse of Propositon 4 is open:

Problem 1. Does every string rewriting system R such that e ¢ lhs(R) that is not match-
bounded have a non-empty set W C raised(R, W)?

If the stronger statement “...have some ¢ € N and a non-empty reqular set W C
raised.(R, W)” holds then match-boundedness is decidable: One can simultaneously enu-
merate these certificates (¢, W) along with certificates for match-boundedness (according to
Theorem 4). Example 13 seems to indicate that the stronger statement is false. So the
following remains open:

Problem 2. Is match-boundedness decidable?

6 MATCH-BOUNDS FOR FORWARD CLOSURES

We have shown that match-boundedness for L is a criterion for termination on L. To prove
termination on »* however, the obvious choice L = ¥* may be too restrictive as it even
entails linear derivational complexity. We are going to show that the set of right hand sides
of forward closures [20, 7] is a better choice for L. For a string rewriting system R over X,
the set of forward closures FC(R) C ¥* x ¥* is defined as the least set containing R such
that

o if (u,v) € FC(R) and v —g w, then (u,w) € FC(R) (inside reduction), and

10

o if (u,vly) € FC(R) and ({165 — 1) € R for strings ¢, # €, {5 # €, then (uly,vr) €
FC(R) (right extension).

Let RFC(R) denote the set of right hand sides of forward closures. Equivalently, RFC(R) is
the least subset of ¥* containing rhs(R) such that

e if v € RFC(R) and v — g w, then w € RFC(R), and
o if v/; € RFC(R) and ({10, — r) € R for {1 # €, {3 # €, then vr € RFC(R).

Theorem 5 ([6]). A string rewriting system R is terminating on ¥* if and only if R is
terminating on RFC(R).

Theorem 2 for L = RFC(R) yields:

Corollary 3. Every string rewriting system R that is match-bounded for RFC(R) is termi-
nating.

Ezample 14. The system R = {aa — aba} (cf. Example 8) is match-bounded for RFC(R)
by 0 since the set RFC(R) = (ab)*a consists of strings in normal form. Therefore, R is
terminating.

We can obtain RFC(R) as a set of descendants modulo the rewriting system R, =
RU{li# — 1| (l1ly — 1) € R, {1 # €,05 # €} over alphabet ¥ U {#}, where right extension

is simulated via the new end-marker # ¢ 3. Indeed,
RFC(R) = Ry (rhs(R) - #") N X"
is an immediate consequence of the following equality.

Lemma 4. Let R be a string rewriting system over ¥, where # ¢ ¥.. Then RFC(R) - #* =
R (rhs(R) - #7).

Proof. Show the inclusion from left to right by induction over the definition of RFC(R).
Conversely, RJ (ths(R) - #*) € RFC(R) - #* is shown by induction over n. O

Definition 2. The string rewriting system R is RFC-match-bounded if R4 is match-bounded
for rhs(R) - #*.

Recall that R, is match-bounded for rhs(R) - #* if and only if Ry is match-bounded for
Ry, (ths(R) - 7).

Corollary 4. If a string rewriting system R is RFC-match-bounded, then the language
RFC(R) is regular.

Lemma 5. If a string rewriting system R is RFC-match-bounded, then R is match-bounded
for REC(R).

Proof. 1f Ry is match-bounded for R} (rhs(R) - #*), then R is match-bounded for RFC(R)
as R C Ry and, by Lemma 4, RFC(R) C R (rhs(R) - #7). O

11

However, RFC-match-boundedness and match-boundedness for RFC(R) are not equiva-
lent, see Example 20 for a counterexample.

Combining the previous lemma with Theorems 2 and 5, we obtain the following termi-
nation criterion.

Theorem 6. Every REC-match-bounded string rewriting system is terminating.

Example 15. Zantema’s system Z = {a?b? — b*a} from Example 9 is RFC-match-bounded
by 4, as the following finite automaton accepts the language match;(Z4)*(lifto(rhs(Z) - #%)).

boas

This automaton is a certificate for termination (cf. the remark after Theorem 4).

Ezample 16. The system By = {ab — ba} from Example 6 is RFC-match-bounded by 1
since match(Bay)*(liftg(rhs(Bs) - #%)) = bo(ap U bf a1)#;. It is not match-bounded, see
Example 10.

Ezample 17. The system R = {ab — bba} is RFC-match-bounded by 1. Here, as can easily
be seen, match(Ry)*(lifto(rhs(R) - #*)) = ba(ao U (b3)Ta1)#;. Again, this system is not
match-bounded, see Example 13.

The Examples 16 and 17 show that RFC-match-bounded systems, unlike match-bounded
systems, may have non-linear derivational complexities. We do not know of an RFC-match-
bounded system with longer than exponential derivations.

Ezample 18. The bubble-sort system over a three-letter alphabet, By = {ab — ba,ac —
ca,bc — cb}, is not match-bounded for RFC(Bj3), and hence not RFC-match-bounded. To
prove it, check btcta C RFC(Bs), and observe that {bc — ¢b} C Bj is not match-bounded
for btct, cf. Example 6. In contrast, all proper subsystems of Bz are RFC-match-bounded
by 1.

Ezample 19. For R = {ab — baa}, we have RFC(R) N b*a* = {b"a*"|n > 1} ¢ REG. By
Corollary 4, R is not RFC-match-bounded, in contrast to Example 17. This shows that the
class of RFC-match-bounded systems is not closed under reversal, i.e., under the operation
R — {rev(f) — rev(r) | (¢ — r) € R}, where rev(aiay...a,) = a,...aza; for a; € 3. (Note
that the class of terminating systems is trivially closed under reversal.)

12

7 RFC-MATCH-BOUNDEDNESS AND RELATED CONDITIONS

As a sufficient condition for termination of a string rewriting system R, we introduced match-
boundedness of R for RFC(R). In order to construct RFC(R), we used the enriched system
Ry. This system contains additional rules that subtly influence match heights, as indicated
in this section.
Ezxample 20. Here, we will present an example demonstrating that the inverse of Lemma 5
does not hold true. We claim that the string rewriting system R over alphabet {a,b, ¢, d, e}
with rules
{a = b, b—cd, de — a, cb — a}

is match-bounded for RFC(R), but not RFC-match-bounded.

Claim 1: R is match-bounded for RFC(R). Indeed, it is straightforward to verify that R
is match-bounded by 3 for RFC(R) = c*a U ¢*b U c¢'d.

Claim 2: R is not RFC-match-bounded. This is a direct consequence of the fact that,
for z € {0,1} and for any n > 1,

2" —1 *
GZ#O _)match(R#) A2n+1-
The proof is by induction on n. We have a,#9 — b,.1#0 — Coyod.ioffo — Coa0a1 —
C,y0bs — a3 for n =1, and for n > 1 we obtain

n_q * 2n—1 2n—1 2n—1
az#o - a2n—1#o - bzn#o - C2n+1d2n+1#0 —
on—1_1 *
C2n+1a1#o — Con41Q2p—1 — C2n+1b2n — A2p+41,

the induction hypothesis being applied twice. Throughout, rewriting is modulo match(R4).

Ezxample 21. Even if a string rewriting system R is both match-bounded for RFC(R) and
RFC-match-bounded, the corresponding least match-bounds may differ by any given number
k > 0. This is shown for the system

R = {ai_l — (Zi7bi_1 — b, | 1 <1<]{} U {ak_l — Cd, de — bo,Cbk_l — (Io}

over alphabet {ag,...,ax_1,bo,...,bk_1,c,d,e}. As is easily seen, R is match-bounded for
RFC(R) by k+ 1, whereas R is match-bounded for rhs(R) - #* by 2k + 1. So the difference
between these bounds is indeed k.

For completeness’ sake we also mention a sufficient criterion for RFC-match-boundedness.
We will use the set of left hand sides of forward closures of a rewriting system R, denoted
by LFC(R).

We remark that computation of LEFC(R) seems to require the construction of the full set
FC(R), a step that could be avoided for RFC(R).

Proposition 6. If a string rewriting system R is match-bounded for LFC(R) by ¢ then R is
REC-match-bounded by c.

Proof. For any step that uses a rule ¢1# — r, it is possible to reconstruct some string ¢,
with ¢,/ — r in R that # represents. This transformation preserves match heights. m

Ezample 22. The least RFC-match-bound of R = {aa — aba} from Example 8 is 1. The

least match-bound of R for LFC(R) = aa™, however, is 2.

Ezample 23. The system R = {aba — a,ab — ba} is RFC-match-bounded by 1, but R is
not match-bounded for a(ba)™ C LFC(R).

13

8 IMPLEMENTING MATCH-BOUNDS: MATCHBOX

We have implemented the algorithms presented in this paper (Theorems 4 and 6) in a pro-
gram called Matchbox. It can be accessed via a CGl-interface at http://theol.informatik.
uni-leipzig.de/matchbox/, its Haskell source is available.

The program fared quite well in the recent “termination competition” held at the 6th
International Workshop on Termination (WST 2003) at Valencia, Spain. Unlike its competi-
tors, however, Matchbox only addresses string rewriting.

In particular, Matchbox is able to prove termination for a large number of one-rule string
rewrite systems for which all standard automated methods (like path orderings and poly-
nomial interpretations) fail, and for which only complicated ad-hoc proofs were known, if
any. The list below contains those one-rule systems that are left from an attempt to classify
termination of all (approx. 6.7 - 10°) one-rule systems {¢ — r} where |[¢| < |r| < 9. They
cannot be solved by any known method [11].

{abaab — baabbaa}, {babbaa — abbaabba},
{aabaaab — baaabbaaa}, {ababaab — baabbabaa},
{baabba — aabbaaabb}, {caabca — aabccaabe},
{aabaaba — abaabaaab}, {abaab — baabbaaba}.

Matchbox yields proofs that all these systems are RFC-match-bounded by 2.
9 A COMPARISON TO THE TERMINATION HIERARCHY

We have shown that for string rewriting systems R the following implications are valid:

match-bounded =
match-bounded for LFC(R) =
RFC-match-bounded =
match-bounded for RFC(R) =

terminating

None of these implications can be reversed: The system {ab — ba} from Example 10 is
match-bounded for LFC(R) = ab®, but not match-bounded. Example 23 is RFC-match-
bounded but not match-bounded for LFC(R). Example 20 contains a counterexample to the
converse of the third implication. Finally, the system Bj from Example 18 is terminating
though not match-bounded for RFC(Bs). It is interesting to compare these results with
Zantema’s termination hierarchy [30, 31]:

polynomially terminating = w-terminating = totally terminating =

simply terminating = non-self-embedding = terminating

As it turns out, this hierarchy is orthogonal to all four properties mentioned above. Indeed,
Bs = {ab — ba,ac — ca,bc — cb} is polynomially terminating (choose n — 3n + 1,
n +— 2n+ 1 and n — n + 1 as interpretation for a, b and ¢ respectively), but not match-
bounded for RFC(R). And {aa — aba} is a non-self-embedding system that is nevertheless
match-bounded.

14

10 CONCLUSION

If the flow of information during rewriting is suitably restricted, some desirable properties
hold: termination, bounded derivational complexity, or preservation of regular languages.
For instance, McNaughton [21] and independently Ferreira and Zantema [9] use extra letters
to indicate the absence of information flow through certain positions. Kobayashi et al. [18]
restrict derivations by using markers for the start and the end of a redex. Sénizergues [27]
constructs finite automata to solve the termination problem for certain one-rule string rewrit-
ing systems. Moczydlowski and Geser [22, 23] restrict the way the right hand side of a rule
may be consumed in order to simulate the rewrite relation by the computation of a pushdown
automaton.

With our concepts of deleting and match-bounded string rewriting, we aim at extending
these approaches to a systematic theory of termination by language properties. Regularity
preservation forms a basis for automated termination proofs. We present two variants to
demonstrate some of the potential of this new approach. Match-boundedness on the set
of all strings over the given alphabet is easiest to conceive. On the other hand, match-
boundedness on more restricted sets, for instance the right hand sides of forward closures,
may significantly enlarge the application domain. Each method can solve hard examples,
like Zantema’s system.

We expect these powerful criteria to enable some major progress in the decision problem
of uniform termination of one-rule string rewriting systems, a problem open for 13 years [19]
(see also [26, Problem 21]). Our hope is supported by the fact that some hard one-rule
systems can now be proven terminating automatically.

Single-player games like Peg Solitaire can be analyzed through the construction of reach-
ability sets. It is challenging to extend this approach to two-player rewriting games [29].
Interesting properties are termination, which is necessary for a well-defined game, or regu-
larity of winning sets. Even the impartial case is hard; here the central question is whether
Grundy values are bounded.

It seems natural to carry over the notion of match-boundedness to term rewriting, in
order to obtain both closure properties and new automated termination proof methods.

Acknowledgements.

This research was supported in part by the National Aeronautics and Space Administration
(NASA) while the last two authors were visiting scientists at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center (LaRC),
Hampton, VA, in September 2002.

REFERENCES

[1] R. V. Book, M. Jantzen, and C. Wrathall. Monadic Thue systems. Theoret. Comput.
Sci., 19:231-251, 1982.

[2] R. V. Book and F. Otto. String-Rewriting Systems. Texts Monogr. Comput. Sci..
Springer-Verlag, New York, 1993.

15

3]

[11]

[12]

[13]

[14]

[15]

B. Chidlovskii. Using regular tree automata as XML schemas. In J. Hoppenbrouwers,
T. de Souza Lima, M. Papazoglou, and A. Sheth (Eds.), Proc. IEEE Advances in Digital
Libraries 2000 ADL-00, pp. 89-98. IEEE Comput. Society, 2000.

C. Choffrut and J. Karhumaki. Combinatorics of words. In G. Rozenberg and A. Sa-
lomaa (Eds.), Handbook of Formal Languages, Vol. 1, pp. 329-438. Springer-Verlag,
1998.

T. Coquand and H. Persson. A proof-theoretical investigation of Zantema’s problem.
In M. Nielsen and W. Thomas (Eds.), Proc. 11th Annual Conf. of the EACSL CSL-97,
Lecture Notes in Comput. Sci. Vol. 1414, pp. 177-188. Springer-Verlag, 1998.

N. Dershowitz. Termination of linear rewriting systems. In S. Even and O. Kariv (Eds.),
Proc. 8th Int. Coll. Automata, Languages and Programming ICALP-81, Lecture Notes
i Comput. Sci. Vol. 115, pp. 448-458. Springer-Verlag, 1981.

N. Dershowitz. Termination of rewriting. J. Symbolic Comput., 3(1-2):69-115, 1987.

N. Dershowitz and C. Hoot. Topics in termination. In C. Kirchner (Ed.), Proc. 5th Int.
Conf. Rewriting Techniques and Applications RTA-93, Lecture Notes in Comput. Sci.
Vol. 690, pp. 198-212. Springer-Verlag, 1993.

M. C. F. Ferreira and H. Zantema. Dummy elimination: Making termination easier.
In H. Reichel (Ed.), 10th Int. Symp. Fundamentals of Computation Theory FCT-95,
Lecture Notes in Comput. Sci. Vol. 965, pp. 243-252. Springer-Verlag, 1995.

T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In
D. A. McAllester (Ed.), 17th Int. Conf. Automated Deduction CADE-17, Lecture Notes
i Artificial Intelligence Vol. 1831, pp. 271-290. Springer-Verlag, 2000.

A. Geser. Is Termination Decidable for String Rewriting with only One Rule?
Habilitationsschrift. Eberhard-Karls-Universitat Tiibingen, Germany, 2001.

A. Geser, D. Hofbauer and J. Waldmann. Match-bounded string rewriting systems.
In B. Rovan and P. Vojtas (Eds.), Proc. 28th Int. Symp. Mathematical Foundations

of Computer Science MFCS-03, Lecture Notes in Comput. Sci. Vol. 2747, pp. 449-459.
Springer-Verlag, 2003.

A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting systems and
automated termination proofs. In A. Rubio (Ed.), Proc. 6th Int. Workshop on Termi-
nation WST-03, Technical Report DSIC-11/15/03, Universidad Politécnica de Valencia,
Spain, pp. 19-22, 2003.

A. Geser and H. Zantema. Non-looping string rewriting. RAIRO — Theoret. Inform.
Appl., 33:279-302, 1999.

S. Ginsburg and S. A. Greibach. Mappings which preserve context sensitive languages.
Inform. and Control, 9(6):563-582, 1966.

16

[16]
[17]

[18]

[19]

T. N. Hibbard. Context-limited grammars. J. ACM, 21(3):446-453, 1974.

D. Hofbauer and J. Waldmann. Deleting string rewriting systems preserve regularity.
In Z. Esik and Z. Filop (Eds.), Proc. 7th Int. Conf. Developments in Language Theory
DLT-03, Lecture Notes in Comput. Sci. Vol. 2710, pp. 337-348. Springer-Verlag, 2003.

Y. Kobayashi, M. Katsura, and K. Shikishima-Tsuji. Termination and derivational
complexity of confluent one-rule string-rewriting systems. Theoret. Comput. Sci., 262(1-
2):583-632, 2001.

W. Kurth. Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel.
Dissertation, Technische Universitat Clausthal, Germany, 1990.

D. S. Lankford and D. R. Musser. A finite termination criterion. Technical Report,
Information Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA, 1978.

R. McNaughton. Semi-Thue systems with an inhibitor. J. Automat. Reason., 26:409—
431, 2001.

W. Moczydiowski Jr. Jednoregutowe systemy przepisywania stéw. Masters thesis, War-
saw University, Poland, 2002.

W. Moczydtowski Jr. and A. Geser. Termination of single-threaded one-rule Semi-Thue
systems. Technical Report TR 02-08 (273), Warsaw University, Dec. 2002. Available at
http://research.nianet.org/ geser/papers/single.html.

C. Moore and D. Eppstein. One-dimensional peg solitaire, and duotaire. In
R. J. Nowakowski (Ed.), More Games of No Chance, Cambridge Univ. Press, 2003.

B. Ravikumar. Peg-solitaire, string rewriting systems and finite automata. In H.-
W. Leong, H. Imai, and S. Jain (Eds.), Proc. 8th Int. Symp. Algorithms and Computa-
tion ISAAC-97, Lecture Notes in Comput. Sci. Vol. 1350, pp. 233-242. Springer-Verlag,
1997.

The RTA list of open problems. http://www.lsv.ens-cachan.fr/rtaloop/.

G. Sénizergues. On the termination problem for one-rule semi-Thue systems. In
H. Ganzinger (Ed.), Proc. 7th Int. Conf. Rewriting Techniques and Applications RTA-
96, Lecture Notes in Comput. Sci. Vol. 1103, pp. 302-316. Springer-Verlag, 1996.

E. Tahhan Bittar. Complexité linéaire du probleme de Zantema. C. R. Acad. Sci. Paris
Sér. I Inform. Théor., t. 323:1201-1206, 1996.

J. Waldmann. Rewrite games. In S. Tison (Ed.), Proc. 13th Int. Conf. Rewriting
Techniques and Applications RTA-02, Lecture Notes in Comput. Sci. Vol. 2378, pp.
144-158. Springer-Verlag, 2002.

H. Zantema. Termination of term rewriting: interpretation and type elimination. J.
Symbolic Comput., 17(1):23-50, 1994.

17

[31] H. Zantema. The termination hierarchy for term rewriting. Appl. Algebra Engrg. Comm.
Comput., 12(1-2):3-19, 2001.

[32] H. Zantema and A. Geser. A complete characterization of termination of 0719 — 170°.
Appl. Algebra Engrg. Comm. Comput., 11(1):1-25, 2000.

18

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From - To)
01/12/2003 Contractor Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Match-bounded String Rewriting Systems

5b. GRANT NUMBER
NCC-1-02043

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Geser, Alfons, Hofbauer, Dieter, and Waldmann, Johannes

5e. TASK NUMBER

5f. WORK UNIT NUMBER
786-10-10-10-00

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . REPORT NUMBER

NASA Langley Research Center National Institute of Aerospace (NIA)

Hampton, VA 23681-2199 144 Research Drive NIA Report No. 2003-09

Hampton, VA 23666

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S ACRONYM(S)

National Aeronautics and Space Administration NASA
Washington, DC 20546-0001

11. SPONSORING/MONITORING
REPORT NUMBER

NASA/CR-2003-212685

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 60, 61
Availability: NASA CASI (301) 621-0390 Distribution: Nonstandard

13. SUPPLEMENTARY NOTES
Langley Technical Monitor: Ricky Butler

14. ABSTRACT

We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of
methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers,
match heights. If the minimal height of all positions in a redex is h then every position in the reduct will get height h+1. |
match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that re
a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a gi
bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bo
open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded syst
terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for ir
set of right hand sides of forward closures.

15. SUBJECT TERMS
String Rewriting; Termination; Match-bounded; Deleting; Forward Closure

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER |19b. NAME OF RESPONSIBLE PERSON

ABSTRACT OF N :
a. REPORT |b. ABSTRACT | c. THIS PAGE paces | STIHelp Desk (email: help@sti.nasa.qov)
uu 19b. TELEPHONE NUMBER (Include area code)
U] U 23
(301) 621-0390

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239-18

	cover.pdf
	NASA/CR-2003-212685
	NIA Report No. 2003-09
	Match-bounded String Rewriting Systems
	Alfons Geser
	National Institute of Aerospace, Hampton, Virginia
	Dieter Hofbauer
	University of Kassel, Kassel, Germany
	Johannes Waldmann
	University of Leipzig, Leipzig, Germany
	December 2003
	Match-bounded String Rewriting Systems
	Alfons Geser
	National Institute of Aerospace, Hampton, Virginia
	Dieter Hofbauer
	University of Kassel, Kassel, Germany
	Johannes Waldmann
	University of Leipzig, Leipzig, Germany
	NASA/CR-2003-212685
	NIA Report No. 2003-09
	December 2003

	cover.pdf
	NASA/CR-2003-212685
	NIA Report No. 2003-09
	Match-bounded String Rewriting Systems
	Alfons Geser
	National Institute of Aerospace, Hampton, Virginia
	Dieter Hofbauer
	University of Kassel, Kassel, Germany
	Johannes Waldmann
	University of Leipzig, Leipzig, Germany
	December 2003
	Match-bounded String Rewriting Systems
	Alfons Geser
	National Institute of Aerospace, Hampton, Virginia
	Dieter Hofbauer
	University of Kassel, Kassel, Germany
	Johannes Waldmann
	University of Leipzig, Leipzig, Germany
	NASA/CR-2003-212685
	NIA Report No. 2003-09
	December 2003

	REPORT DATE (DD-MM-YYYY): 01-12-2003
	REPORT TYPE: Contractor Report
	DATES COVERED (From - To):
	TITLE AND SUBTITLE: Match-bounded String Rewriting Systems
	5a:
	 CONTRACT NUMBER:

	5b:
	 GRANT NUMBER: NCC-1-02043

	5c:
	 PROGRAM ELEMENT NUMBER:

	5d:
	 PROJECT NUMBER:

	5e:
	 TASK NUMBER:

	5f:
	 WORK UNIT NUMBER: 786-10-10-10-00

	AUTHOR: Geser, Alfons, Hofbauer, Dieter, and Waldmann, Johannes
	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES): NASA Langley Research Center National Institute of Aerospace (NIA)
Hampton, VA 23681-2199 144 Research Drive
 Hampton, VA 23666
	PERFORMING ORGANIZATION: NIA Report No. 2003-09
	SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES): National Aeronautics and Space Administration
Washington, DC 20546-0001
	SPONSORING/MONITOR'S ACRONYM: NASA
	SPONSORING/MONITORING: NASA/CR-2003-212685
	DISTRIBUTION/AVAILABILITY STATEMENT: Unclassified - Unlimited
Subject Category 60, 61
Availability: NASA CASI (301) 621-0390 Distribution: Nonstandard
	SUPPLEMENTARY NOTES: Langley Technical Monitor: Ricky Butler
	ABSTRACT: We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.
	SUBJECT TERMS: String Rewriting; Termination; Match-bounded; Deleting; Forward Closure
	SECURITY CLASSIFICATION OF REPORT: U
	SECURITY CLASSIFICATION OF: ABSTRACT: U
	SECURITY CLASSIFICATION OF: THIS PAGE: U
	LIMITATION OF ABSTRACT: UU
	NUMBER OF PAGES: 23
	NAME OF RESPONSIBLE PERSON: STI Help Desk (email: help@sti.nasa.gov)
	TELEPHONE NUMBER (Include area code): (301) 621-0390

